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High-dimensional signal models

Encoding of multiple variables

• Time, Space, Frequency, Modality
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Tensors

3

Includes materials from: Introduction to tensor, tensor factorization and its 
applications, by Mu Li, iPAL Group Meeting, Sept. 17, 2010
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Fiber and slice
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Tensor unfoldings: Matricization and 
vectorization

• Matricization: convert a tensor to a matrix

5Spring Semester 2019 CS-570 Statistical Signal Processing



Tensor Mode-n Multiplication

• Tensor x Matrix • Tensor x Vector
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Examples
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Tensor multiplication: the n-mode product: multiplied by a 
matrix 
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Tensor models

•

•

•

• Rank – 1 Tensor
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NP type 
problem
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Kronecker and Khatri-Rao products
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μ-mode matrix products
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Tensor Products
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Tensor Decompositions-Historical Background

• Founding fathers:
Frank L. Hitchkock, in 1927 [1]

Raymond b. Katell, in 1944 [2]

• Regained interest due to:
Ledyard Tucker, in 1966

J. Douglas Caroll, in 1970

Richard A. Harshman, in 1970

• First results in:
Psychometrics (Caroll, Harshman)

Chemometrics (Appelof, Davidson, R. Bro)
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Tucker Decomposition

PARAFAC/CANDECOMP

Slides by Michalis Giannopoulos
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Tensor factorization
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Rank-1 matrices and tensors
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Extension of SVD

The analogy between dyadic and polyadic decompositions
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CANDECOMP/PARAFAC

• Rank 1 Tensor models

• CP  factorization: 
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Reminder: SVD
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Uniqueness
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Low rank Tensor Approximation
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rank-𝑅 factorization

2nd column set1st column set
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Low rank Tensor Approximation
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TUCKER
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• Tucker(3) factorization

•
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Tucker and Multilinear SVD (MLSVD)
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•

•

•

•
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The n-Rank

• :           [1], [2]: The dimension of the vector space which is spanned 
by the mode-n fibers of column rank of

• Rank-(𝑅1, 𝑅2, ⋯𝑅𝑁) tensor  𝑅𝑛: Column-rank of the mode-n unfolding 
𝑿 𝑛

• Usefulness: Tensor approximation  Compression

For ≥ 1 dimensions:

• Lack of Uniqueness:
“Transform” the core tensor

Apply the inverse ”transform” to the factor matrices 𝑨, 𝑩 and 𝑪

Sometimes desired: Sketching arithmetic solutions for Tucker decomposition computation
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Trimmed version 
of original tensor
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Low rank approximation
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Construction from SVD
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Good low rank approximation if singular values decay sufficiently fast.
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CP decomposition
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Tensor rank of X = minimal possible R
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CP decomposition
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Tucker decomposition

• SVD:
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Tucker decomposition
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Higher-order SVD (HOSVD)
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Higher-order SVD (HOSVD)
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Take home messages

• CP

+ Exploratory model

+ Unique (under mild conditions)

+ Easy to interpret

- Hard to determine appropriate rank

- Global minimum

 Extract latent factors for interpretation

 Exploratory clustering
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Take home messages

• TUCKER

+ Non-trilinear interactions

+ Optimal tensor compression

- Non-unique 

- Hard to interpret

 Tensor compression
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Tensor Trains

36Spring Semester 2019 CS-570 Statistical Signal Processing



Higher-order CS with Tensors
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Parallel decomposition
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Sparse Non-Negative Tensor Factorization

Sparse encoding

Non-negativity:

More interpretable results
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Tensor Completion
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• Low rank Tensor/Matrices
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Low-rank Tensor completion

• CP based approach

• N-rank approach
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Decomposition based approaches

PARAFAC/TUCKER

• Assume
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Tensor Completion via Parallel Matrix 
Factorization
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• Generalization of MC problem:

• Sampling operator:

• Tensor Nuclear Norm Definition [1]:

• Problem reformulation:
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Tensor Completion via Parallel Matrix 
Factorization
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TC via Parallel Matrix Factorization

• Similar to the matrix case

• Tensor nuclear norm

• Nuclear norm minimization
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Tensor Signal Analysis for WSN Data

• Water impedance measurements (Ohms)

 5 sensors

 10 different channels/sensor

 3 day period  Sampling every 1 and 2 hours

Experimental data collected from a WSN operating at a 
pilot desalination plant, located at La Tordera, Spain [1]

Matrices: 50 × 72, 50 × 36

Tensors: 5 × 10 × 72, 5 × 10 × 36
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Effects of Data Structuring
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• Higher fill-ratio

 Better reconstruction 
quality quantified

• Regardless matrix/tensor 
size
 TC outperforms MC from 

low fill-ratio regimes

• NMSE convergence
 MC reaches a plateau

 TC decreases (nearly) 
monotonically
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WSN Outdoors Dataset
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• Temperature measurements

 19 sensors

 10 day period

 Sampling every 5 and 10 minutes

Experimental data collected from a WSN operating at a 
Grand-St-Bernard pass between Switzerland and Italy

Matrices: 190 × 288, 190 × 144

Tensors: 19 × 10 × 288, 19 × 10 × 144
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Effects of Data Structuring
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• Higher fill-ratio

 Better reconstruction 
quality quantified

• Larger Dataset
 TC outperforms MC from

lower fill-ratio regimes

• NMSE convergence
 MC reaches a plateau

 TC keeps decreasing
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Effects of Fill-Ratio
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• Data sampled from single day
 GT data

 MC reconstructed data

 TC reconstructed data

• 𝑓 = 0.2
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WSNs for Human Activity Recognition
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HAR

Elderly 
assistance

Health 
monitoring

Fitness 
coaching

Acting upon 
alerting 
events

Chronic 
conditions 

management
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?

Sensing and Gathering Matrix/Tensor Measurement Recovery Learning based HAR

Problem formulation
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Single-device vs collective recovery: 
matrices

Scenario 2
Collective per modality

Scenario 1
Single-device

Scenario 3: Overall collective recovery structured similarly
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Single-device vs collective recovery: 
tensors

Scenario 3: Overall collective recovery structured similarly

Scenario 2
Collective per modality

Scenario 1
Single-device

Spring Semester 2019 54CS-570 Statistical Signal Processing



Some results
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Matrix Completion Tensor Completion

HAR

mHealth
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TensorBeat

Tensor Decomposition for Monitoring Multi-Person Breathing Beats 
with Commodity WiFi

• channel state information (CSI) phase difference

• CP decomposition of a two dimensional Hankel matrix with phase 
difference data from back-to-back received packets extracted from 
each subcarrier at each antenna

• leveraging the phase differences from the 60 subcarriers, i.e., that 
between antennas 1 and 2, and between antennas 2 and 3, we can 
construct the third dimension of the CSI tensor data.
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TensorBeat
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Analysis of EEG and f-MRI

• Tensor decompositions and data fusion in epileptic EEG and 
functional magnetic resonance imaging data
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channels ×
time samples ×
measurements 
× patients
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Impact of structuring
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